If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31t^2+100t=50
We move all terms to the left:
31t^2+100t-(50)=0
a = 31; b = 100; c = -50;
Δ = b2-4ac
Δ = 1002-4·31·(-50)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-90\sqrt{2}}{2*31}=\frac{-100-90\sqrt{2}}{62} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+90\sqrt{2}}{2*31}=\frac{-100+90\sqrt{2}}{62} $
| 0=6x+6-10x | | 6x+6-10x=0 | | x^2+49x+49=0 | | X+18=3(x-6) | | 6x-18=3(2x-3)-(2x+6) | | 6(t+2)+8=44 | | 6x+x=6-10x | | (5x+8)°+(3x-18)°+x°=180° | | X/4+(x+5)/3=10 | | 3.5f=14 | | −7=-3+a−3+a | | 11x+7-4x=-5x-18+x | | x=6x+6-10x | | 59+m=221 | | 6x+6-x=10 | | 10=-5+3z=-z | | 5w=115 | | 13v+22=40 | | y2-2y-8000=0 | | 8x^2+5x-14=0 | | t+36=112 | | 5x=321 | | 6(x-2)+x=3 | | 8m=3m+30 | | 15y-12=37 | | t=10=20=180 | | 15x+33=11x-1 | | 7x-20=4. | | 4y-7=3y-3 | | -2x-6=-1x+8-8x | | X°+90°+y=180° | | 68-2x=40+x |